

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2025.03.20, the SlowMist security team received the Flooring Lab team's security audit application for Bitmap

Punks, developed the audit plan according to the agreement of both parties and the characteristics of the project,

and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit
Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Serial Number Audit Class Audit Subclass

7 Security Design Audit
Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

BitmapPunks is an NFT project on the Ethereum blockchain that combines innovative mechanisms of non - fungible

tokens (NFTs) and fungible tokens. Each BitmapPunk NFT corresponds to one BMP token, and 1:1 BMP tokens are

automatically airdropped upon minting.

Transferring or selling BMP tokens will transfer the corresponding BitmapPunk NFT into the burn pool. The

decoupled tokens can randomly retrieve an image from the burn pool at any time through the "reveal" function.

Transferring or selling a BitmapPunk NFT will automatically transfer the corresponding BMP tokens and lock the NFT.

The feature and attribute data of the NFT are generated by on-chain encoding.

Users can make a offer to sell the locked NFTs they hold, and they can also bid for the purchase of other users'

NFTs.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
Lack of fee settlement

when minting NFTs
Design Logic Audit Critical Fixed

N2
Missing update

numExchangableNFT
when minting NFTs

Design Logic Audit High Fixed

N3
Missing chainID check

in the signature
verification

Replay
Vulnerability

Medium Fixed

N4

Incorrect condition for
numExchangableNFT

update in the
_exchangeNFT

function

Design Logic Audit High Fixed

N5 Pseudo-random risk
Block data

Dependence
Vulnerability

Medium Fixed

N6
Token compatibility

reminder
Others Suggestion Acknowledged

N7
Missing boundary
condition checks

Design Logic Audit Medium Acknowledged

N8

Improper use of
symbols in

setTraitConstraints
function

Design Logic Audit High Fixed

N9 Missing event records Others Suggestion Fixed

N10
Authority transfer

enhancement
Others Suggestion Acknowledged

N11
Preemptive
Initialization

Reordering
Vulnerability

Suggestion Acknowledged

N12
Risk of excessive

authority
Authority Control
Vulnerability Audit

Medium Acknowledged

4 Code Overview

4.1 Contracts Description

Audit Version:

https://github.com/flooringlab/bmp-erc721

commit: 363a72c6372a9d226153c04715e6b10f369c98b7

Fixed Version:

https://github.com/flooringlab/bmp-erc721

commit: 2310685e84db3e24465d928e99e9a3cf7ebfdc0f

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

BitmapPunks

Function Name Visibility Mutability Modifiers

<Constructor> Public
Can Modify

State
-

initialize Public Payable -

name Public - -

symbol Public - -

revealNFT Public
Can Modify

State
checkRevealable

concealNFT Public
Can Modify

State
-

mint Public Payable
onlyOwnerOrRoles

checkAndUpdateTotalMinted

BitmapPunks

setExchangeNFTFeeR
ate

Public
Can Modify

State
onlyOwnerOrRoles

setRevealable Public
Can Modify

State
onlyOwnerOrRoles

_guardInitializeOwner Internal - -

_authorizeUpgrade Internal
Can Modify

State
onlyOwnerOrRoles

_afterConsecutiveMint
s

Internal
Can Modify

State
-

BitmapPunks721

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State BitmapBT404Mirror

initialize Public Can Modify State -

tokenURI Public - -

exchange Public Can Modify State verifyOracleSignature

exchangeByMigrator Public Can Modify State onlyOwnerOrRoles

addTokenBatch Public Can Modify State onlyOwnerOrRoles

setOracle Public Can Modify State onlyOwner

setOracleSigBlockRange Public Can Modify State onlyOwner

_checkOwnerOrRoles Internal - -

_useOracleNonce Internal Can Modify State -

_hashExchangeData Internal - -

_checkOracleSignature Internal Can Modify State -

_authorizeUpgrade Internal Can Modify State onlyOwnerOrRoles

<Fallback> External Payable bt404NFTFallback

BitmapPunksMigration

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

initialize Public Can Modify State initializer

migrateToken Public Can Modify State onlyOwner

migratePunks Public Can Modify State onlyOwner

withdraw Public Can Modify State onlyOwner

withdraw Public Can Modify State onlyOwner

BitmapTraits

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

BitmapBT404

Function Name Visibility Mutability Modifiers

tokenURI Public - -

_mint Internal Can Modify State -

_afterConsecutiveMints Internal Can Modify State -

BitmapBT404Mirror

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State BT404Mirror

<Fallback> External Payable bt404NFTFallback bitmapFallback

BT404

Function Name Visibility Mutability Modifiers

_getBT404Storage Internal - -

_initializeBT404 Internal Can Modify State -

_unit Internal - -

name Public - -

symbol Public - -

tokenURI Public - -

decimals Public - -

totalSupply Public - -

balanceOf Public - -

allowance Public - -

approve Public Can Modify State -

transfer Public Can Modify State -

transferFrom Public Can Modify State -

_transfer Internal Can Modify State -

_revealNFT Internal Can Modify State -

_transferFromNFT Internal Can Modify State -

_exchangeNFT Internal Can Modify State -

_payExchangeFee Internal Can Modify State -

_pullFeeForTwo Internal Can Modify State -

_mintNFT Internal Can Modify State -

_burnNFT Internal Can Modify State -

BT404

_approve Internal Can Modify State -

_getAux Internal - -

_setAux Internal Can Modify State -

getLockedBalance Public - -

_setExchangeNFTFeeRate Internal Can Modify State -

_setListMarketFeeRate Internal Can Modify State -

_addressData Internal Can Modify State -

_registerAndResolveAlias Internal Can Modify State -

mirrorERC721 Public - -

_totalNFTSupply Internal - -

_balanceOfNFT Internal - -

_ownerAt Internal - -

_ownerOf Internal - -

_exists Internal - -

_getApproved Internal - -

_approveNFT Internal Can Modify State -

_removeNFTApproval Internal Can Modify State -

_setApprovalForAll Internal Can Modify State -

_setNFTLockState Internal Can Modify State -

_ownedIds Internal - -

_offerForSale Internal Can Modify State -

_acceptOffer Internal Can Modify State -

BT404

_cancelOffer Internal Can Modify State -

_clearNFTOffer Internal Can Modify State -

_bidForBuy Internal Can Modify State -

_acceptBid Internal Can Modify State -

_cancelBid Internal Can Modify State -

_transferToken Private Can Modify State -

<Fallback> External Payable bt404Fallback

<Receive Ether> External Payable -

_ownershipIndex Internal - -

_ownedIndex Internal - -

_getOwnedIndexOf Internal - -

_delNFTAt Internal Can Modify State -

_totalSupplyOverflows Internal - -

_packedLogsMalloc Internal - -

_packedLogsSet Internal - -

_packedLogsAppend Internal - -

_packedLogsSend Internal Can Modify State -

_calldataload Internal - -

_calldatacopyArray Private - -

_calldatacopyOrders Private - -

_return Internal - -

_zeroFloorSub Internal - -

BT404

_min Internal - -

_max Internal - -

_toUint Internal - -

_get Internal - -

_set Internal Can Modify State -

_setOwnerAliasAndOwnedIndex Internal Can Modify State -

BT404Mirror

Function Name Visibility Mutability Modifiers

_getBT404NFTStorage Internal - -

<Constructor> Public Can Modify State -

_initializeBT404Mirror Internal Can Modify State -

name Public - -

symbol Public - -

tokenURI Public - -

totalSupply Public - -

balanceOf Public - -

ownerOf Public - -

ownerAt Public - -

approve Public Can Modify State -

getApproved Public - -

setApprovalForAll Public Can Modify State -

isApprovedForAll Public - -

BT404Mirror

ownedIds Public - -

lockedIds Public - -

transferFrom Public Can Modify State -

safeTransferFrom Public Can Modify State -

safeTransferFrom Public Can Modify State -

updateLockState Public Can Modify State -

_exchange Internal Can Modify State -

offerForSale Public Can Modify State nonReentrant

acceptOffer Public Payable nonReentrant

cancelOffer Public Can Modify State nonReentrant

bidForBuy Public Payable nonReentrant

acceptBid Public Can Modify State nonReentrant

cancelBid Public Can Modify State nonReentrant

supportsInterface Public - -

owner Public - -

pullOwner Public Can Modify State -

baseERC20 Public - -

<Fallback> External Payable bt404NFTFallback

<Receive Ether> External Payable -

_ownedIds Private - -

_readString Private - -

_readWord Internal - -

BT404Mirror

_callBaseRetWord Private Can Modify State -

_calldataload Internal - -

_hasCode Private - -

_checkOnERC721Received Private Can Modify State -

Bitmap721Template

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State BitmapBT404Mirror

_checkOwnerOrRoles Internal - -

_authorizeUpgrade Internal Can Modify State onlyOwnerOrRoles

initialize Public Can Modify State -

tokenURI Public - -

BitmapLayersUpgradeable

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

_authorizeUpgrade Internal Can Modify State onlyOwner

initialize Public Can Modify State initializer

BitmapTraitsUpgradeable

Function Name Visibility Mutability Modifiers

<Constructor> Public Can Modify State -

_authorizeUpgrade Internal Can Modify State onlyOwner

initialize Public Can Modify State initializer

PaletteRegistry

Function Name Visibility Mutability Modifiers

_getPaletteStorage Internal - -

createPalette Public Can Modify State -

getPalettes Public - -

getPalette Public - -

lastPaletteId Public - -

_setPalette Internal Can Modify State -

_getPaletteColors Internal - -

PixelLayerRegistry

Function Name Visibility Mutability Modifiers

_getLayerStorage Internal - -

createLayer Public Can Modify State -

createLayer Public Can Modify State -

createLayer Public Can Modify State -

createLayer Public Can Modify State -

createPixelData Public Can Modify State -

sortLayersByZIndex Public - -

getLayers Public - -

getLayer Public - -

getPixelData Public - -

lastLayerId Public - -

_sortLayersByZIndex Internal - -

PixelLayerRegistry

_createLayer Internal Can Modify State -

_createPixelData Internal Can Modify State -

_getPixelDataRef Internal - -

_checkLayerData Internal - -

_checkLayerRegion Internal - -

_isValidBitsPerPixel Internal - -

_getLayerInner Internal - -

_loadMemoryArray Internal - -

_storeMemoryArray Internal - -

PixelLayerResolver

Function Name Visibility Mutability Modifiers

createPaletteAndLayer Public Can Modify State -

genBMPFromLayers Public - -

genSVGFromLayers Public - -

compositeLayers Public - -

_compositeLayerWithPalette Internal - -

_compositeActiveRegion Internal - -

_compositeLayerBG Internal - -

_compositeLayerRectBG Internal - -

_blendBGRA Internal - -

TraitRegistry

Function Name Visibility Mutability Modifiers

_getTraitStorage Internal - -

_initializeTraitRegistry Internal Can Modify State -

createTraits Public Can Modify State -

createTraitPool Public Can Modify State -

createTraitsAndPool Public Can Modify State -

createTraitType Public Can Modify State -

setTraitConstraints Public Can Modify State -

setTraitPoolConstraints Public Can Modify State -

setTraitWeightInPool Public Can Modify State -

registerCollection Public Can Modify State -

setCollectionImageFormat Public Can Modify State -

transferCollectionOwnership Public Can Modify State -

lastTraitId Public - -

getTraits Public - -

collectionConfig Public - -

getTraitPool Public - -

getTraitType Public - -

traitToTraitRelation Public - -

traitToPoolRelation Public - -

poolToPoolRelation Public - -

getCollectionTraitTypeCount Public - -

TraitRegistry

getCollectionTraitTypeCount Public - -

getImageURIOf Public - -

generateRandomTraits Public - -

generateRandomTraitsFor Public - -

getAttibutesJson Public - -

getAttibutesJson Public - -

_getRandomTrait Internal - -

_filterTraits Internal - -

_isMatchingConstraint Internal - -

_isLimited Internal - -

_listContains Internal - -

_getTraitLayers Internal - -

_setBitmap Internal Can Modify State -

_loadCalldataArray Internal - -

_loadMemoryArray Internal - -

_storeMemoryArray Internal - -

TraitsMetadata

Function Name Visibility Mutability Modifiers

_getTraitsMetadataStorage Internal - -

_initializeTraitsMetadata Internal Can Modify State -

tokenTraits Public - -

traitRegistry Public - -

TraitsMetadata

_getTokenAttributesAndImage Internal - -

_addTokenBatch Internal Can Modify State -

_findTokenBatch Internal - -

_getTraitRandomSeeds Internal - -

_readStringByArray Private - -

4.3 Vulnerability Summary

[N1] [Critical] Lack of fee settlement when minting NFTs

Category: Design Logic Audit

Content

In the BitmapBT404 contract, the _mint function is used for NFT minting operations. However, within the function,

before minting NFTs for users, the _pullFeeForTwo function is not called to settle the claimable fees of the NFTs

previously seeded by users. This will cause these newly minted NFTs to be able to directly participate in the fee

calculation, allowing users to claim more fees than expected, and may prevent other seeding users from normally

claiming rewards.

Code Location:

src/bt404/BitmappBT404.sol#L35-94

 function _mint(address to, uint256 amount) internal virtual {

 ...

 }

Solution

It is recommended that when minting new NFTs for users, the _pullFeeForTwo function should be called first to settle

the unclaimed fees.

Status

Fixed

[N2] [High] Missing update numExchangableNFT when minting NFTs

Category: Design Logic Audit

Content

In the BitmapBT404 contract, when the _mint function is called to mint NFTs for users, it doesn't check whether the

user's operatorApprovals for the contract address is true (that is, check the value of

$.operatorApprovals[address(this)][to]), resulting in the new minted NFT quantity not being added to

$.numExchangableNFT. This will cause other functions of the contract to be affected due to $.numExchangableNFT.

Code Location:

src/bt404/BitmappBT404.sol#L35-94

 function _mint(address to, uint256 amount) internal virtual {

 ...

 }

Solution

It is recommended to check whether the value of $.operatorApprovals[address(this)][owner] is true after

minting NFTs for users, and then update the value of $.numExchangableNFT.

Status

Fixed

[N3] [Medium] Missing chainID check in the signature verification

Category: Replay Vulnerability

Content

In the BitmapPunks721 contract, the exchange function allows users to input data such as the tokenId of the

specified NFT and custom fees. After verification by the verifyOracleSignature function, the NFT exchange operation

is carried out. However, when hashing the data that needs to be signed, the chainId is not in included the hash. This

means that if the project is deployed on multiple chains, the signature may be maliciously replayed by attackers on

another chain, resulting in unexpected fee information being passed in.

Code Location:

src/bt404/BitmapPunks721.sol#L89&L168

 function exchange(uint256 idX, uint256 idY, uint32 feeRate, bytes calldata

signature)

 public

 verifyOracleSignature(_hashExchangeData(idY, feeRate, msg.sender), signature)

 returns (uint256 exchangeFee)

 {

 return _exchange(idX, idY, feeRate);

 }

 function _checkOracleSignature(bytes32 msgHash, bytes calldata signature) internal

{

 ...

 msgHash = keccak256(abi.encodePacked(msgHash, blockNumber, nonce));

 require(

 SignatureCheckerLib.isValidSignatureNow(oracle, msgHash, r, vs),

 InvalidOracleSignature()

);

 }

Solution

If the project plans to be deployed on multiple chains, it’s recommended to add the chainId in the hash calculation of

the signature message.

Status

Fixed

[N4] [High] Incorrect condition for numExchangableNFT update in the _exchangeNFT function

Category: Design Logic Audit

Content

In the BT404 contract, the _exchangeNFT function is used for the exchange operation of two NFTs. It transfers the

NFT corresponding to idX from its owner's address to the owner of the NFT corresponding to idY, and transfers the

NFT corresponding to idY from its owner's address to the owner of the NFT corresponding to idX and locks it. When

the NFT corresponding to idY is not from the burn pool and the user's operatorApprovals for the contract address is

true, the value of $.numExchangableNFT is updated by decrementing. However, under normal circumstances, when

an NFT is transferred to the burn pool or the NFT obtained by the user needs to be locked, the value of

$.numExchangableNFT will be decremented. In the _exchangeNFT function, the NFT obtained by the user will be

locked after the transfer regardless of whether it comes from the burn pool. So the condition check !exchangeBurned

here is redundant.

Let's use an example to illustrate this situation:

1.Suppose a user holds an NFT with a tokenId of 1, and there is an NFT in the burn pool with a tokenId of 2. The

user's operatorApprovals for the contract is true, and at this time, $.numExchangableNFT is equal to 1.

2.The user calls the exchange function to perform the NFT exchange operation. At this time, the NFT with tokenId of

2 will be transferred from the burn pool to the user and locked, and the NFT with tokenId of 1 will be transferred to

the burn pool. Since one of the two NFTs is locked and the other is in the burn pool, the value of

$.numExchangableNFT should be 0. However, because exchangeBurned is true, the update of

$.numExchangableNFT in the _exchangeNFT function is skipped, resulting in the value of $.numExchangableNFT still

being equal to 1.

Code Location:

src/bt404/BT404.sol#L708

 function _exchangeNFT(uint256 idX, uint256 idY, uint256 feeRate, address

msgSender)

 internal

 virtual

 returns (address, address, uint256)

 {

 ...

 bool exchangeBurned = _get($.oo, _ownershipIndex(idY)) ==

_ADDRESS_ALIAS_BURNED_POOL;

 {

 mapping(address => Uint256Ref) storage thisOperatorApprovals =

 $.operatorApprovals[address(this)];

 /// Only Burned or Approved NFT can be exchanged.

 if (!exchangeBurned && thisOperatorApprovals[y].value == 0) {

 revert ApprovalCallerNotOwnerNorApproved();

 }

 // lock 1 NFT

 if (!exchangeBurned && thisOperatorApprovals[x].value != 0) {

 unchecked {

 --$.numExchangableNFT;

 }

 }

 }

 ...

 }

Solution

It is recommended to remove the !exchangeBurned in the conditional check when updating $.numExchangableNFT.

Status

Fixed

[N5] [Medium] Pseudo-random risk

Category: Block data Dependence Vulnerability

Content

In the BT404 contract, the _revealNFT function is used to enable users to take out a random NFT from the burn pool.

The obtained random TokenId is calculated using block.prevrandao, the user's address, and the number of NFTs the

user currently holds. Unfortunately, these parameters can be controlled or are already known. As a result, the

outcome is predictable, which allows malicious users to obtain high - value NFTs by predicting the random number.

Code Location:

src/bt404/BT404.sol#L540

 function _revealNFT(address owner, uint256 nftAmount) internal virtual {

 ...

 do {

 uint256 randomIndex = uint256(

 keccak256(abi.encodePacked(block.prevrandao, owner, toIndex))

) % burnedPoolSize;

 uint256 id = _get($.burnedPool, randomIndex);

 if (randomIndex != (--burnedPoolSize)) {

 uint32 lastId = _get($.burnedPool, burnedPoolSize);

 _set($.burnedPool, randomIndex, lastId);

 _setOwnerAliasAndOwnedIndex(

 oo, lastId, _ADDRESS_ALIAS_BURNED_POOL, uint32(randomIndex)

);

 }

 _set(owned, toIndex, uint32(id));

 _setOwnerAliasAndOwnedIndex(oo, id, senderAlias, uint32(toIndex++));

 _packedLogsAppend(packedLogs, id);

 } while (toIndex != toEnd);

 ...

 }

Solution

Using Chainlink VRF is the best practice for using random numbers on the blockchain, but it comes with a relatively

high cost.

Another viable solution is to first identify a future block (for example, 4 epochs in advance). When the user is allowed

to claim the NFT upon reaching that block, the block.prevrandao of that future block will be used to calculate the

tokenId. Since the block.prevrandao comes from the specified future block, it can better meet the requirements for

randomness.

Status

Fixed; Updated: Use a random number parameter that has passed signature verification to calculate the tokenId.

[N6] [Suggestion] Token compatibility reminder

Category: Others

Content

In the BT404 contract, when making a quoted transaction for an NFT, the _transferToken function is used to transfer

the specified ERC20 tokens. However, if this function uses SafeTransferLib.safeTransferFrom for the transfer, it does

not check the difference between the balance before and after the transfer to the recipient address against the

transferred amount. If the tokens to be transferred are deflationary tokens, then the actual number of tokens received

will not match the number of tokens recorded in the contract.

Code Location:

src/bt404/BT404.sol#L1432

 function _bidForBuy(address msgSender, NFTOrder[] memory orders) internal {

 ...

 for (uint256 i; i < orders.length;) {

 ...

 {

 ...

 // Refund exist bid.(Prevent Reentrancy externally)

 _transferToken(bid.bidToken, address(this), msgSender, bid.tokens);

 // Receive new bid funds.

 _transferToken(token, msgSender, address(this), tokenUnits);

 if (token == address(0)) nativeBidTokens += tokenUnits;

 }

 unchecked {

 ++i;

 }

 }

 ...

 }

 function _transferToken(address token, address from, address to, uint256 amount)

private {

 if (token == address(0)) {

 ...

 } else if (token == address(this)) {

 ...

 } else {

 if (from == address(this)) {

 SafeTransferLib.safeTransfer(token, to, amount);

 } else {

 SafeTransferLib.safeTransferFrom(token, from, to, amount);

 }

 }

 }

Solution

It is recommended to use the difference between the recipient address’s balance before and after the transfer to

record the user’s actual transfer amount.

Status

Acknowledged; The project team responded: Deflationary tokens will not be considered, and only tokens officially

supported will be displayed on the front-end.

[N7] [Medium] Missing boundary condition checks

Category: Design Logic Audit

Content

1.In the TraitRegistry contract, when a user calls the createTraits function to create traits, they need to set the layerIds

of the corresponding layers of the trait. However, in this function, it does not check whether each of the incoming

layerId is less than $.lastLayerId in the PixelLayerRegistry contract. This may lead to the situation where a user could

set the id of a layer that has not been created yet for the trait.

Code Location:

src/TraitRegistry.sol#L203

 function createTraits(TraitParam[] calldata traitList)

 public

 returns (uint256[] memory traitIds)

 {

 ...

 for (uint256 i = 0; i < length; ++i) {

 ...

 traitIds[i] = traitId;

 trait.layerIds = param.layerIds;

 ...

 }

 ...

 }

2.In the TraitRegistry contract, when a user calls the createTraitPool function to create trait pools, they need to set the

traits owned by this pool. However, in this function, it does not check whether each of the incoming traitId is not

greater than $.lastTraitId. This may lead to the situation where a user could set the id of a trait that has not been

created yet for the pool.

Code Location:

src/TraitRegistry.sol#L227

 function createTraitPool(address collection, uint256[] memory traitIds)

 public

 returns (uint256 poolIndex)

 {

 ...

 for (uint256 k = 0; k < count; ++k) {

 p.traitIds.set(k, _loadMemoryArray(traitIds, k).toUint32());

 }

 ...

 }

3.In the TraitRegistry contract, when a user calls the createTraitType function to create trait types, they need to set

the pools owned by this type. However, in this function, it does not check whether each of the incoming poolIndex is

less than config.poolCount. This may lead to the situation where a user could set the index of a pool that has not

been created yet for the trait type.

Code Location:

src/TraitRegistry.sol#L263

 function createTraitType(address collection, TraitTypeParam calldata param)

 public

 returns (uint256 traitTypeIndex)

 {

 ...

 for (uint256 k = 0; k < poolCount; ++k) {

 st.poolIndexes.set(k, _loadCalldataArray(param.poolIndexes,

k).toUint16());

 }

 st.poolCount = uint16(poolCount);

 ...

 }

4.In the TraitRegistry contract, when a user calls the setTraitWeightInPool function, it sets the weight of each trait in

the trait pool. However, in this function, it does not check whether the pool corresponding to the specified poolIndex

has been created. At the same time, it does not check whether each of the incoming traitIds is within the range of the

traitIds in the trait pool (i.e., pool.traitIds). This means that users may set weights for traits that are not yet in the pool.

Code Location:

src/TraitRegistry.sol#L227

 function setTraitWeightInPool(

 address collection,

 uint256 poolIndex,

 uint256[] calldata traitIds,

 uint256[] calldata weights

) public {

 ...

 TraitPool storage pool = config.traitPools[poolIndex.toUint16()];

 uint256 length = traitIds.length;

 require(length == weights.length, TraitsAndWeightsNotMatch());

 for (uint256 i = 0; i < length; ++i) {

 uint16 weight = _loadCalldataArray(weights, i).toUint16();

 require(weight > 0, InvalidTraitWeight());

 pool.traitWeights.set(_loadCalldataArray(traitIds, i).toUint32(), weight);

 }

 emit TraitPoolWeightSet(collection, poolIndex, traitIds, weights);

 }

5.In the PixelLayerRegistry contract, when a user calls the createLayer function to create a layer, they need to set the

palette corresponding to this layer. However, in this function, it doesn't check whether the incoming paletteId is not

greater than $.lastPaletteId in the PaletteRegistry contract. This may cause users to set an uncreated palette for the

layer.

Code Location:

src/PixelLayerRegistry.sol#L146

 function createLayer(

 LayerParam calldata layerParam,

 RectRegion memory regionParam,

 uint256 bgcolorOrIndex,

 bytes calldata pixels,

 uint256 paletteId

) public returns (uint256) {

 ...

 require(paletteId > 0, InvalidPaletteId());

 ...

 return _createLayer(layerParam, regionParam, bgcolorOrIndex, pixelRefId,

paletteId);

 }

 function _createLayer(

 LayerParam calldata layerParam,

 RectRegion memory regionParam,

 uint256 bgcolorOrIndex,

 uint256 pixelRefId,

 uint256 paletteId

) internal returns (uint256 layerId) {

 {

 ...

 layer.paletteId = paletteId.toUint32();

 ...

 }

 ...

 }

Solution

It is recommended to add appropriate boundary checks in the above functions to prevent unexpected situations.

Status

Acknowledged

[N8] [High] Improper use of symbols in setTraitConstraints function

Category: Design Logic Audit

Content

In the TraitRegistry contract, when the setTraitConstraints and setTraitPoolConstraints functions are called, the trait

constraint lists and pool constraint lists corresponding to traits and trait pools are set. The _setBitmap function is

used to add data to these lists. However, in the _setBitmap function, when new data is added, it returns the number

of newly added items instead of the result of adding to the original number of items in the list. Moreover, when

updating the constraint count in the setTraitConstraints and setTraitPoolConstraints functions, direct equal sign

assignment is used instead of using += for accumulation. This results in incorrect changes to the count of constraints

during the update.

Code Location:

src/TraitRegistry.sol

 function setTraitConstraints(

 address collection,

 uint256 baseTraitId,

 uint256[] calldata traitBlockList,

 uint256[] calldata traitAllowList,

 uint256[] calldata poolBlockList,

 uint256[] calldata poolAllowList

) public {

 {

 CollectionConfig storage config =

_getTraitStorage().collectionConfigs[collection];

 require(config.owner == msg.sender, NotOwnerOfCollection());

 TraitConstraint storage constraint =

config.traitConstraints[baseTraitId.toUint32()];

 uint256 traitBlockCount = _setBitmap(constraint.traitBlockList,

traitBlockList);

 uint256 traitAllowCount = _setBitmap(constraint.traitAllowList,

traitAllowList);

 uint256 poolBlockCount = _setBitmap(constraint.poolBlockList,

poolBlockList);

 uint256 poolAllowCount = _setBitmap(constraint.poolAllowList,

poolAllowList);

 constraint.traitBlockCount = uint32(traitBlockCount);

 constraint.traitAllowCount = uint32(traitAllowCount);

 constraint.poolBlockCount = uint16(poolBlockCount);

 constraint.poolAllowCount = uint16(poolAllowCount);

 }

 emit TraitConstraintSet(

 collection, baseTraitId, traitBlockList, traitAllowList, poolBlockList,

poolAllowList

);

 }

 function setTraitPoolConstraints(

 address collection,

 uint256 basePoolIndex,

 uint256[] calldata poolBlockList,

 uint256[] calldata poolAllowList,

 uint256[] calldata traitBlockList,

 uint256[] calldata traitAllowList

) public {

 CollectionConfig storage config =

_getTraitStorage().collectionConfigs[collection];

 require(config.owner == msg.sender, NotOwnerOfCollection());

 TraitPool storage p = config.traitPools[basePoolIndex.toUint16()];

 {

 uint256 poolBlockCount = _setBitmap(p.poolBlockList, poolBlockList);

 uint256 poolAllowCount = _setBitmap(p.poolAllowList, poolAllowList);

 uint256 traitBlockCount = _setBitmap(p.traitBlockList, traitBlockList);

 uint256 traitAllowCount = _setBitmap(p.traitAllowList, traitAllowList);

 p.poolBlockCount = uint16(poolBlockCount);

 p.poolAllowCount = uint16(poolAllowCount);

 p.traitBlockCount = uint32(traitBlockCount);

 p.traitAllowCount = uint32(traitAllowCount);

 }

 emit TraitPoolConstraintSet(

 collection, basePoolIndex, poolBlockList, poolAllowList, traitBlockList,

traitAllowList

);

 }

 function _setBitmap(Bitmap storage map, uint256[] calldata vals)

 internal

 returns (uint256 changedCount)

 {

 unchecked {

 uint256 length = vals.length;

 for (uint256 i = 0; i < length; ++i) {

 uint256 val = _loadCalldataArray(vals, i);

 if (!map.get(val)) {

 map.set(val);

 ++changedCount;

 }

 }

 }

Solution

It is recommended to change the = to += when updating the constraint count in these two functions.

Status

Fixed

[N9] [Suggestion] Missing event records

Category: Others

Content

1.In the BitmapPunks contract, the migration manager role can set whether to enable the reveal through the

setRevealable function. However, no event logging is performed.

Code Location:

src/bitmap-punk/BitmapPunks.sol#L84-86

 function setRevealable(bool _revealable) public

onlyOwnerOrRoles(_MIGRATION_MANAGER_ROLE) {

 revealable = _revealable;

 }

2.In the BitmapPunks721 contract, the owner role can set the oracle address and oracleSigBlockRange. However, no

event logging is performed.

Code Location:

src/bitmap-punk/BitmapPunks721.sol#L123-129

 function setOracle(address oracle_) public onlyOwner {

 oracle = oracle_;

 }

 function setOracleSigBlockRange(uint48 oracleSigBlockRange_) public onlyOwner {

 oracleSigBlockRange = oracleSigBlockRange_;

 }

Solution

It is recommended to record events when sensitive parameters are modified for self-inspection or community review.

Status

Fixed

[N10] [Suggestion] Authority transfer enhancement

Category: Others

Content

There is no pending and accept mechanism for authority transfer to avoid loss of authority. If the new owner is

incorrectly set, the permission will be lost.

Code Location:

src/TraitRegistry.sol

 function transferCollectionOwnership(address collection, address newOwner) public

{

 CollectionConfig storage config =

_getTraitStorage().collectionConfigs[collection];

 require(config.owner == msg.sender, NotOwnerOfCollection());

 config.owner = newOwner;

 emit CollectionOwnershipTransferred(collection, msg.sender, newOwner);

 }

Solution

It is recommended to have a pending and accept operation when transferring minting authority to avoid losing

authority.

Status

Acknowledged

[N11] [Suggestion] Preemptive Initialization

Category: Reordering Vulnerability

Content

By calling the initialize function to initialize the contract, there is a potential issue that malicious attackers

preemptively call the initialize function to initialize.

Code location:

src/bitmap-punk/BitmapPunks.sol#L46-53

src/bitmap-punk/BitmapPunks721.sol#L46-52

src/bitmap-punk/BitmapPunksMigration.sol#L35-37

 function initialize(...) public payable {

 ...

 }

src/example/BitmapLayersUpgradeable.sol#L16-18

src/example/BitmapTraitsUpgradeable.sol#L16-19

 function initialize() public initializer {

 __Ownable_init(tx.origin);

 }

Solution

It is suggested that the initialization operation can be called in the same transaction immediately after the contract is

created to avoid being maliciously called by the attacker.

Status

Acknowledged; The project team responded: During the deployment process, we will try our best to ensure that the

contract is deployed and initialized simultaneously. Currently, we are using Foundry script.

[N12] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

1.In the BitmapPunks contract, the mint manager role can mint tokens and NFTs for any specified address through

the mint function. If this role is set to an EOA address and its permission is compromised, it could affect the normal

operation of the project.

Code Location:

src/bitmap-punk/BitmapPunks.sol#L71-78

 function mint(address to, uint256 nftAmount)

 public

 payable

 onlyOwnerOrRoles(_MINT_MANAGER_ROLE)

 checkAndUpdateTotalMinted(nftAmount)

 {

 _mint(to, nftAmount * _unit());

 }

2.In the BitmapPunks721 contract, the owner role can set the oracle address and oracleSigBlockRange through the

setOracle and setOracleSigBlockRange functions. In addition, both the owner role and the migration manager role

can set the seeds for specified NFTs and exchange any two NFTs by calling the addTokenBatch and

exchangeByMigrator functions. If the private keys of these roles are leaked, it will cause the loss of users’ funds.

Code Location:

src/bitmap-punk/BitmapPunks721.sol#L100-129

 function exchangeByMigrator(uint256 idX, uint256 idY)

 public

 onlyOwnerOrRoles(_MIGRATION_MANAGER_ROLE)

 returns (uint256 exchangeFee)

 {

 return _exchange(idX, idY, 0);

 }

 function addTokenBatch(uint256 fromTokenId, uint256 toTokenId, uint256 seed)

 public

 onlyOwnerOrRoles(_MIGRATION_MANAGER_ROLE)

 {

 _addTokenBatch(fromTokenId, toTokenId, seed);

 }

 function setOracle(address oracle_) public onlyOwner {

 oracle = oracle_;

 }

 function setOracleSigBlockRange(uint48 oracleSigBlockRange_) public onlyOwner {

 oracleSigBlockRange = oracleSigBlockRange_;

 }

3.In the BitmapPunksMigration contract, the owner role can transfer out any assets in the contract, including tokens

and NFTs. If this role is set to an EOA address and its permission is compromised, it will cause the loss of the

contract’s funds.

Code Location:

src/bitmap-punk/BitmapPunksMigration.sol

 function migrateToken(address token, address recipient, uint256 amount) public

onlyOwner {

 IBT404(token).transfer(recipient, amount);

 }

 function migratePunks(

 address collection,

 address recipient,

 uint256[] calldata ids,

 uint256[] calldata seeds

) public onlyOwner {

 ...

 }

 function withdraw(address token, uint256 amount) public onlyOwner {

 ...

 }

 function withdraw(address collection, uint256[] calldata ids) public onlyOwner {

 ...

 }

4.The UUPSUpgradeable MANAGER_ROLE relevant authority can upgrade the contract, leading to the risk of over-

privileged in this role.

Solution

In the short term, transferring the ownership of core roles to multisig contracts is an effective solution to avoid single-

point risk. But in the long run, it is a more reasonable solution to implement a privilege separation strategy and set up

multiple privileged roles to manage each privileged function separately. The authority involving user funds should be

managed by the community, and the authority involving emergency contract suspension can be managed by the

EOA address. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002504100002 SlowMist Security Team 2025.03.20 - 2025.04.10 Medium Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 critical risk, 3 high risks, 3 medium risks, 1 low risks and 4 suggestion. All

the findings were fixed or acknowledged. Since the project has not yet been deployed to the mainnet and the

permissions of the core roles have not yet been transferred, the risk level reported is temporarily medium.

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

